

Eyeball ASes: From Geography to Connectivity

Amir Rasti, Nazanin Magharei, Reza Rejaie, Walter Willinger

IMC 2010, Melbourne, Australia

1/16/11

Reza Rejaie

1

Introduction

- Large body of research on the A5-level topology
 - · Fueled by BGP- or traceroute-based measurement
 - · The topology is modeled as a graph, AS as a node
- Concerns about the "graph view" of A5-level topology
 - Limited accuracy
 - Ignoring economics
 - · Ignoring geographical coverage of an AS
- Geographic footprint of an AS affects its connectivity
 - e.g. AS X peers with Y if Y has certain on geo coverage, or y has certain number of overlapping PoP locations/IXPs with X.
- How can we estimate geo- and PoP-footprint of an AS?

This Paper

- Proposes a new approach to estimate geo-footprint and PoP-footprint of eyeball ASes
- Our approach complements traditional approaches
 - · Relying on geo location of end-users
 - · More accurate at the edge of the network, eyeball Ases

Contributions:

- · A new approach to determine geo-footprint of eyeball Ases
- · Using geo-footprint to estimate and validate PoP-footprint
- Leveraging inferred PoP locations & given AS-level topology to show that peering relationship at the edge is complex

Our Approach: An Overview

Four steps:

- Sampling end-users IP address of Internet users
- Mapping end-users to geo locations
- Grouping end-users by AS using BGP information
- Estimating AS geo-footprint from location of its end-users

1/16/11

Reza Rejaie

Sampling end-users

- Crawling popular P2P apps: Kad, BitTorrent, Gnutella
- ◆ IP to Geo mapping
 - · Using GeoIP City & IP2Location
- Data Conditioning => target dataset
 - Removing IP address with large error (> 100km)
 - · Removing ASes with less than 1K samples

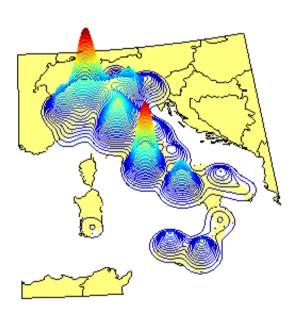
Region	#Peers by source (M)			#ASes by level		
	Kad	Gnu	ВТ	City	State	Country
NA	1.2	8.9	1.7	36	162	129
EU	18	2.5	2.5	60	76	292
AS	17.8	1.6	1.0	117	35	134

1/16/11

Reza Rejaie

Estimating Geo Footprint

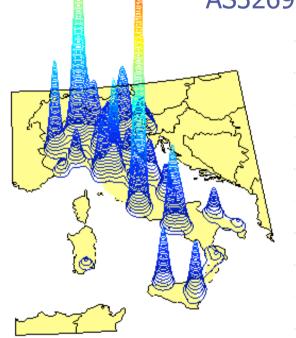
- Using Kernel Density Estimation (KDE)
 method with Gaussian kernel function
 => probability density function
- KDE presents a weighted average across close-by peers
 - Smooth out the error in IP-geo mapping of individual users
 - Offers a more aggregate than user-level view
- Largest contour of the density function represents geo footprint
 - · May consist of one or multiple regions

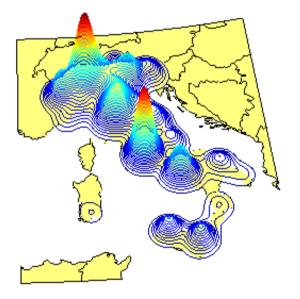


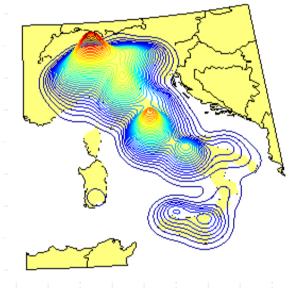
Setting Kernel Bandwidth

- Kernel bandwidth (BW) determines the scope of averaging
 - Larger BW filters out larger error but leads to a coarser resolution of geo-footprint
 - · Accuracy of IP-geo mapping determines min bw for KDE
- We focus on city-level resolution for geo-footprint
 - Set kernel bandwidth to radius of a city: 40Km
- City level resolution reveals PoP locations

Effect of kernel Bandwidth







$$BW = 20km$$

$$BW = 40km$$

$$BW = 60km$$

PoP-Level Footprint

- Major cities in a geo-footprint with the highest user density are likely location of PoPs
- Identify coordinates of major local peaks of the density function
 - · Filter out minor peaks due to randomly clustered samples
- Map each peak to the most populated city within the radius of BW from peak's coordinates (loose mapping)
- PoP level footprint is a collection of cities and their user density
- Biased samples may affect PoP-level footprint (see the paper for details)

Bias in Collected samples

- The fraction of collected samples from a city could be disproportional with actual user population per AS
- Cannot distinguish between market share of an AS in a city and penetration of P2P app in that city
- Mild bias only affects the density of identified PoPs
- Significant bias is unlikely with a large number of samples

1/16/11

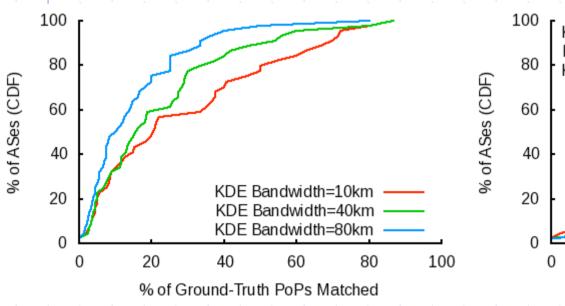
Reza Rejaie

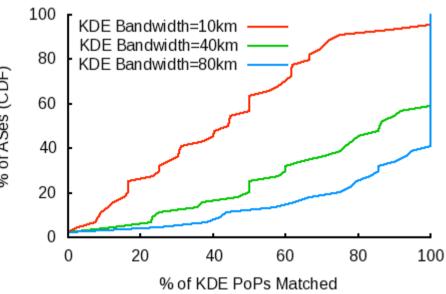
Evaluation

- Collecting reported PoP information for eyeball ASes on the Web as ground truth
 - · Only available for a small fraction of ASes
 - · Inconsistent terminology and method across different ASes
- Reference Dataset
 - Focused on 672 ASes
 - Identified PoP info for only 45 ASes (10 state-, 33 country-, 2 continent-level)
- Our approach identified 31.9, 13.6 and 7.3 PoPs/AS on avg as we increase BW 10km, 40km, and 80km, respectively.
 - · Avg PoP/AS from ground truth is 43.7

Results

- Perc. of reference PoPs matched Perc. of KDE PoPs matched
- Decreasing bw increases matched PoPs
- bw=40km, for the bottom 60% of bw=80km, perfect catch for 60% ASes, < 20% of PoPs matched. of ASes, < 20% of PoPs matched.
 - Decreasing bw reduces matched PoPs





Using larger kernel bw leads to a smaller but more reliable set of PoPs for most ASes

Evaluation (cont'd)

- Possible sources of error against the ground truth
 - Some eyeballs ASes have PoPs away from their customers to connect to providers or peers
 - · Some eyeball ASes have multiple close-by PoPs
 - · Misinterpreted or obsolete info from the Web
- Please see the paper for
 - · Comparison with PoPs detected by DIMES project
 - · Case study that use geo properties

Summary

- The proposed approach is promising in identifying geo- and PoP-footprint of eyeball ASes
- Our case study demonstrates how geo information can be used to examine AS topology

Future Work

- Addressing the limitations of the technique
- Leveraging geo properties of ASes to examine their strategies to inter-connect